login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244953
a(n) = Sum_{i=0..n} (-i mod 4).
1
0, 3, 5, 6, 6, 9, 11, 12, 12, 15, 17, 18, 18, 21, 23, 24, 24, 27, 29, 30, 30, 33, 35, 36, 36, 39, 41, 42, 42, 45, 47, 48, 48, 51, 53, 54, 54, 57, 59, 60, 60, 63, 65, 66, 66, 69, 71, 72, 72, 75, 77, 78, 78, 81, 83, 84, 84, 87, 89, 90, 90, 93, 95, 96, 96, 99
OFFSET
0,2
COMMENTS
Partial sums of A158459.
Similar to A047271 with every third term repeated.
FORMULA
a(n) = Sum_{i=0..n} A158459(i).
From Bruno Berselli, Jul 09 2014: (Start)
G.f.: (3 + 2*x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n) = 1 + n + ( 2*(1 + n) - (1 + (-1)^n)*(1 + 2*i^(n*(n+1))) )/4, where i = sqrt(-1).
a(n) = 6 + Sum_{i=1..3}((4-i)*floor((n-i)/4)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5). - Robert Israel, Jul 09 2014
a(n) = (3*n + 4 - (n mod 4 - 2)^2)/2. - Thomas Klemm, Aug 21 2022
EXAMPLE
To quickly generate terms of the sequence: start with zero for n=0, then add 3 more for n=1, then add 2 more for n=2, add 1 more..., then add 0..., and repeat.
MAPLE
A244953:=n->add(-i mod 4, i=0..n): seq(A244953(n), n=0..50);
MATHEMATICA
Table[Sum[Mod[-i, 4], {i, 0, n}], {n, 0, 50}]
Table[1 + n + (2 (1 + n) - (1 + (-1)^n) (1 + 2 I^(n (n + 1))))/4, {n, 0, 70}] (* Bruno Berselli, Jul 09 2014 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 5, 6, 6}, 70] (* Harvey P. Dale, Oct 29 2023 *)
PROG
(PARI) a(n) = sum(i=0, n, -i % 4); \\ Michel Marcus, Jul 09 2014
(Magma) [&+[-i mod 4: i in [0..n]]: n in [0..70]]; // Bruno Berselli, Jul 09 2014
CROSSREFS
Cf. A158459. Same members as A047271. Similar to A130482.
Sequence in context: A342269 A364751 A123572 * A076819 A355848 A181757
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jul 08 2014
STATUS
approved