OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
a(n) = Sum_{i=0..n} A158459(i).
From Bruno Berselli, Jul 09 2014: (Start)
G.f.: (3 + 2*x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n) = 1 + n + ( 2*(1 + n) - (1 + (-1)^n)*(1 + 2*i^(n*(n+1))) )/4, where i = sqrt(-1).
a(n) = 6 + Sum_{i=1..3}((4-i)*floor((n-i)/4)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5). - Robert Israel, Jul 09 2014
a(n) = (3*n + 4 - (n mod 4 - 2)^2)/2. - Thomas Klemm, Aug 21 2022
EXAMPLE
To quickly generate terms of the sequence: start with zero for n=0, then add 3 more for n=1, then add 2 more for n=2, add 1 more..., then add 0..., and repeat.
MATHEMATICA
Table[Sum[Mod[-i, 4], {i, 0, n}], {n, 0, 50}]
Table[1 + n + (2 (1 + n) - (1 + (-1)^n) (1 + 2 I^(n (n + 1))))/4, {n, 0, 70}] (* Bruno Berselli, Jul 09 2014 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 5, 6, 6}, 70] (* Harvey P. Dale, Oct 29 2023 *)
PROG
(PARI) a(n) = sum(i=0, n, -i % 4); \\ Michel Marcus, Jul 09 2014
(Magma) [&+[-i mod 4: i in [0..n]]: n in [0..70]]; // Bruno Berselli, Jul 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jul 08 2014
STATUS
approved