|
|
A244392
|
|
Primes p such that p + (p reversed) is a palindrome.
|
|
1
|
|
|
2, 3, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 61, 71, 83, 101, 103, 107, 113, 127, 131, 137, 211, 223, 227, 233, 241, 311, 313, 331, 401, 421, 431, 433, 443, 503, 521, 523, 541, 601, 613, 631, 641, 643, 701, 811, 821, 1013, 1021, 1031, 1033, 1051, 1061, 1063
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Palindrome is also a prime for n = 241, 443, 613, 641, 811, 20011, 20047, 20051, 20101, 20161, ... . Example: 613+316 = 929, which is prime. [Bruno Berselli, Jul 05 2014]
|
|
LINKS
|
|
|
EXAMPLE
|
13 is in the sequence because 13+31 = 44 is a palindrome.
1103 is in the sequence because 1103+3011 = 4114 is a palindrome.
|
|
MATHEMATICA
|
selQ[p_] := (id = IntegerDigits[p]; id2 = IntegerDigits[p + FromDigits[Reverse[id]]]; id2 == Reverse[id2]); Select[Array[Prime, 200], selQ] (* Jean-François Alcover, Jul 05 2014 *)
Select[Prime[Range[200]], PalindromeQ[#+IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 11 2020 *)
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(1200) | q eq Reverse(q) where q is Intseq(p+Seqint(Reverse(Intseq(p))))]; // Bruno Berselli, Jul 05 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|