

A244359


Numbers n such that n, n+1, n+2, n+3, and n+4 are not divisible by any of their nonzero digits.


0



866, 976, 7786, 8066, 8786, 8986, 9976, 70786, 77786, 79976, 80066, 80986, 87866, 89066, 89986, 98786, 99866, 99976, 700786, 707786, 709976, 770786, 778786, 778996, 780866, 788986, 789986, 799786, 799976, 800066, 800986, 809986, 879986, 887986, 888986, 889786, 890066, 890786, 890986
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All numbers end in a 6 and every number contains some combination of {6,7,8,9,0}.
There are no consecutive terms in this sequence. See A237766.


LINKS



EXAMPLE

866, 867, 868, 869 and 870 are not divisible by any of their nonzero digits. Thus 866 is a member of this sequence.


MATHEMATICA

div[n_]:=Module[{nzd=Select[IntegerDigits[n], #!=0&]}, NoneTrue[n/nzd, IntegerQ]]; SequencePosition[Table[If[div[n], 1, 0], {n, 900000}], {1, 1, 1, 1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 11 2018 *)


PROG

(Python)
def a(n):
..for i in range(10**4):
....tot = 0
....for k in range(i, i+n):
......c = 0
......for b in str(k):
........if b != '0':
..........if k%int(b)!=0:
............c += 1
......if c == len(str(k))str(k).count('0'):
........tot += 1
....if tot == n:
......print(i, end=', ')
a(5)


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



