%I #8 Dec 11 2018 13:16:02
%S 866,976,7786,8066,8786,8986,9976,70786,77786,79976,80066,80986,87866,
%T 89066,89986,98786,99866,99976,700786,707786,709976,770786,778786,
%U 778996,780866,788986,789986,799786,799976,800066,800986,809986,879986,887986,888986,889786,890066,890786,890986
%N Numbers n such that n, n+1, n+2, n+3, and n+4 are not divisible by any of their nonzero digits.
%C This is a subsequence of A244358.
%C All numbers end in a 6 and every number contains some combination of {6,7,8,9,0}.
%C There are no consecutive terms in this sequence. See A237766.
%e 866, 867, 868, 869 and 870 are not divisible by any of their nonzero digits. Thus 866 is a member of this sequence.
%t div[n_]:=Module[{nzd=Select[IntegerDigits[n],#!=0&]},NoneTrue[n/nzd, IntegerQ]]; SequencePosition[Table[If[div[n],1,0],{n,900000}],{1,1,1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 11 2018 *)
%o (Python)
%o def a(n):
%o ..for i in range(10**4):
%o ....tot = 0
%o ....for k in range(i,i+n):
%o ......c = 0
%o ......for b in str(k):
%o ........if b != '0':
%o ..........if k%int(b)!=0:
%o ............c += 1
%o ......if c == len(str(k))str(k).count('0'):
%o ........tot += 1
%o ....if tot == n:
%o ......print(i,end=', ')
%o a(5)
%Y Cf. A038772, A244358, A237766.
%K nonn,base
%O 1,1
%A _Derek Orr_, Jun 26 2014
