|
|
A244346
|
|
Decimal expansion of 56/13, the Korn constant for the sphere.
|
|
0
|
|
|
4, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Essentially the same digits as A021329. - R. J. Mathar, Jun 27 2014
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.7 Korn Constants, p. 226.
|
|
LINKS
|
Table of n, a(n) for n=1..98.
Wikipedia, Korn's inequality
|
|
FORMULA
|
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n > 5.
G.f.: x*(2*x^4 - 11*x^3 + 3*x^2 + x - 4)/(x^4 - x^3 + x - 1). (End)
|
|
EXAMPLE
|
4.3076923076923076923076923076923... (cyclic digits 307692)
|
|
MATHEMATICA
|
RealDigits[56/13, 10, 98] // First
PadRight[{4}, 120, {2, 3, 0, 7, 6, 9}] (* Harvey P. Dale, Mar 19 2020 *)
|
|
CROSSREFS
|
Sequence in context: A154156 A152675 A200359 * A237818 A198240 A332122
Adjacent sequences: A244343 A244344 A244345 * A244347 A244348 A244349
|
|
KEYWORD
|
nonn,cons,easy
|
|
AUTHOR
|
Jean-François Alcover, Jun 26 2014
|
|
STATUS
|
approved
|
|
|
|