|
|
A021329
|
|
Decimal expansion of 1/325.
|
|
2
|
|
|
0, 0, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
|
|
FORMULA
|
a(n)=(1/15)*{-3*(n mod 6)+7*[(n+1) mod 6]-13*[(n+2) mod 6]+12*[(n+3) mod 6]+2*[(n+4) mod 6]+22*[(n+5) mod 6]}-9*[C(2*n,n) mod 2]-2{C[(n+1)^2,n+3] mod 2}, with n>=0. - Paolo P. Lava, Nov 10 2009
From Colin Barker, Aug 03 2016: (Start)
a(n) = a(n-1)-a(n-3)+a(n-4) for n>5.
G.f.: x^2*(3-3*x+7*x^2+2*x^3) / ((1-x)*(1+x)*(1-x+x^2)).
(End)
|
|
MATHEMATICA
|
PadLeft[First@ #, Length@ First@ # + Abs@ Last@ #] &@ RealDigits@ N[1/325, 120] (* or *)
CoefficientList[Series[x^2 (3 - 3 x + 7 x^2 + 2 x^3)/((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 120}], x] (* Michael De Vlieger, Aug 03 2016 *)
LinearRecurrence[{1, 0, -1, 1}, {0, 0, 3, 0, 7, 6}, 100] (* or *) PadRight[{0, 0}, 100, {9, 2, 3, 0, 7, 6}] (* Harvey P. Dale, May 21 2018 *)
|
|
PROG
|
(PARI) concat([0, 0], Vec(x^2*(3-3*x+7*x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)) + O(x^60))) \\ Colin Barker, Aug 03 2016
|
|
CROSSREFS
|
Sequence in context: A332329 A011200 A201573 * A244809 A316554 A201900
Adjacent sequences: A021326 A021327 A021328 * A021330 A021331 A021332
|
|
KEYWORD
|
nonn,cons,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|