login
A021329
Decimal expansion of 1/325.
2
0, 0, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3, 0, 7, 6, 9, 2, 3
OFFSET
0,3
FORMULA
From Colin Barker, Aug 03 2016: (Start)
a(n) = a(n-1)-a(n-3)+a(n-4) for n>5.
G.f.: x^2*(3-3*x+7*x^2+2*x^3) / ((1-x)*(1+x)*(1-x+x^2)).
(End)
MATHEMATICA
PadLeft[First@ #, Length@ First@ # + Abs@ Last@ #] &@ RealDigits@ N[1/325, 120] (* or *)
CoefficientList[Series[x^2 (3 - 3 x + 7 x^2 + 2 x^3)/((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 120}], x] (* Michael De Vlieger, Aug 03 2016 *)
LinearRecurrence[{1, 0, -1, 1}, {0, 0, 3, 0, 7, 6}, 100] (* or *) PadRight[{0, 0}, 100, {9, 2, 3, 0, 7, 6}] (* Harvey P. Dale, May 21 2018 *)
PROG
(PARI) concat([0, 0], Vec(x^2*(3-3*x+7*x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)) + O(x^60))) \\ Colin Barker, Aug 03 2016
CROSSREFS
Sequence in context: A332329 A011200 A201573 * A244809 A316554 A201900
KEYWORD
nonn,cons,easy
STATUS
approved