%I #17 Dec 27 2023 08:36:12
%S 0,0,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,
%T 7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,
%U 3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3,0,7,6,9,2,3
%N Decimal expansion of 1/325.
%H Colin Barker, <a href="/A021329/b021329.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1).
%F From _Colin Barker_, Aug 03 2016: (Start)
%F a(n) = a(n-1)-a(n-3)+a(n-4) for n>5.
%F G.f.: x^2*(3-3*x+7*x^2+2*x^3) / ((1-x)*(1+x)*(1-x+x^2)).
%F (End)
%t PadLeft[First@ #, Length@ First@ # + Abs@ Last@ #] &@ RealDigits@ N[1/325, 120] (* or *)
%t CoefficientList[Series[x^2 (3 - 3 x + 7 x^2 + 2 x^3)/((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 120}], x] (* _Michael De Vlieger_, Aug 03 2016 *)
%t LinearRecurrence[{1,0,-1,1},{0,0,3,0,7,6},100] (* or *) PadRight[{0,0},100,{9,2,3,0,7,6}] (* _Harvey P. Dale_, May 21 2018 *)
%o (PARI) concat([0,0], Vec(x^2*(3-3*x+7*x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)) + O(x^60))) \\ _Colin Barker_, Aug 03 2016
%K nonn,cons,easy
%O 0,3
%A _N. J. A. Sloane_