login
A244286
Consider a decimal number of k>=2 digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1) and the transform T(x)-> (d_(k)+d_(k-1) mod 10)*10^(k-1) + (d_(k-1)+d_(k-2) mod 10)*10^(k-2) + ... + (d_(2)+d_(1) mod 10)*10 + (d_(1)+d(k) mod 10). Sequence lists the numbers x such that T(x) divides x.
2
66, 374, 464, 550, 646, 648, 666, 828, 2847, 5566, 6468, 6666, 8283, 19142, 37398, 46463, 46464, 46560, 55550, 55660, 64646, 66666, 82029, 373758, 374374, 464464, 464640, 550550, 555500, 646646, 648648, 648912, 666666, 737374, 737484, 823170, 828289, 828291
OFFSET
1,1
LINKS
EXAMPLE
For X = 66 -> T(x) = 22 and 66 / 22 = 3.
For x = 37398 -> T(x) = 00271 and 37398 / 271 = 138.
For x = 295248676 -> T(x) = 147624338 and 295248676 / 147624338 = 2.
MAPLE
P:=proc(q) local a, b, c, j, n; for n from 10 to q do a:=[]; b:=n;
while b>0 do a:=[b mod 10, op(a)]; b:=trunc(b/10); od; b:=(a[nops(a)]+a[1]) mod 10;
c:=0; for j from 1 to nops(a)-1 do c:=c*10+((a[j]+a[j+1]) mod 10); od; c:=c*10+b;
if c>0 then if type(n/c, integer) then print(n); fi; fi; od; end: P(10^9);
PROG
(PARI) plt(n) = {d = digits(n); nd = vector(#d, i, if (i<#d, d[i] + d[i+1], d[#d] + d[1])) % 10; subst(Pol(nd), x, 10); }
isok(n) = plt(n) && ((n % plt(n)) == 0); \\ Michel Marcus, Jul 03 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 25 2014
STATUS
approved