The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244019 Primes of the form 9x^2 + 6xy + 1849y^2. 13
 1873, 2017, 2137, 2377, 2473, 2689, 3217, 3529, 3697, 4057, 4657, 5569, 6073, 6337, 7177, 7393, 7417, 7561, 7681, 7753, 8017, 8089, 8233, 8353, 8737, 8761, 9241, 9601, 9769, 11113, 11257, 11617, 12049, 12433, 12457, 12721, 13297, 13633, 13729, 14281, 15073, 15313, 16417, 17977, 19009, 19273, 20161, 21169, 23017, 24049, 25873, 26161, 26497, 26713, 29569, 30097 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Discriminant=-66528. More than the usual number of terms are shown in order to display the difference from A139668 (Primes of the form x^2+1848y^2). The two sequences agree for the first 43 primes but then disagree [Jagy and Kaplansky]. This is a proper subsequence of A139668, since the terms of A244019 have the form z^2 + 1848*y^2: in fact, 9*x^2 + 6*x*y + 1849*y^2 = (3*x+y)^2 + 1848*y^2. [Bruno Berselli, Jun 20 2014] LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy] N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) MAPLE fd:=proc(a, b, c, M) local dd, xlim, ylim, x, y, t1, t2, t3, t4, i; dd:=4*a*c-b^2; if dd<=0 then error "Form should be positive definite."; break; fi; t1:={}; xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd))); ylim:=ceil( 2*sqrt(a*M/dd)); for x from 0 to xlim do for y from -ylim to ylim do t2 := a*x^2+b*x*y+c*y^2; if t2 <= M then t1:={op(t1), t2}; fi; od: od: t3:=sort(convert(t1, list)); t4:=[]; for i from 1 to nops(t3) do if isprime(t3[i]) then t4:=[op(t4), t3[i]]; fi; od: [[seq(t3[i], i=1..nops(t3))], [seq(t4[i], i=1..nops(t4))]]; end; fd(9, 6, 1849, 50000); MATHEMATICA Reap[For[p = 2, p < 40000, p = NextPrime[p], s = Solve[x > 0 && 9 x^2 + 6 x y + 1849 y^2 == p, {x, y}, Integers]; If[s != {}, Print[p, " ", {x, y} /. s]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 29 2020 *) CROSSREFS Different from A139668 (Primes of the form x^2+1848y^2). Sequence in context: A154675 A068281 A139668 * A054818 A127410 A237570 Adjacent sequences: A244016 A244017 A244018 * A244020 A244021 A244022 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:32 EST 2022. Contains 358671 sequences. (Running on oeis4.)