login
Sum of the squares of q-binomial coefficients for q=2 in row n of triangle A022166, for n >= 0.
3

%I #28 Jul 02 2023 16:53:21

%S 1,2,11,100,1677,49974,2801567,293257480,59426801521,23154622451162,

%T 17786849024835651,26694462878992491180,79786045619298591331605,

%U 469805503062346255040726910,5538428985758278544518994721255,129179377104085570277109465712798800,6048537751321912538368011648067930447545

%N Sum of the squares of q-binomial coefficients for q=2 in row n of triangle A022166, for n >= 0.

%C a(n) is the number of Green's H classes in the semigroup of n X n matrices over GF(2) (cf. A359313). - _Geoffrey Critzer_, Jun 20 2023

%H Paul D. Hanna, <a href="/A243950/b243950.txt">Table of n, a(n) for n = 0..60</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Green%27s_relations">Green's relations</a>

%F a(n) ~ c * 2^(n^2/2), where c = 18.0796893855819714431... if n is even and c = 18.02126069886312898683... if n is odd. - _Vaclav Kotesovec_, Jun 23 2014

%F Sum_{n>=0} a(n)*x^n/A005329(n)^2 = E(x)^2 where E(x) = Sum_{n>=0} x^n/A005329(n)^2. - _Geoffrey Critzer_, Jun 20 2023_

%e G.f.: A(x) = 1 + 2*x + 11*x^2 + 100*x^3 + 1677*x^4 + 49974*x^5 + 2801567*x^6 + ...

%e Related integer series:

%e A(x)^(1/2) = 1 + x + 5*x^2 + 45*x^3 + 781*x^4 + 23981*x^5 + 1371885*x^6 + 145101805*x^7 + 29560055405*x^8 + ... + A243951(n)*x^n + ...

%e A022166, the triangle of q-binomial coefficients for q=2, begins:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 7, 7, 1;

%e 1, 15, 35, 15, 1;

%e 1, 31, 155, 155, 31, 1;

%e 1, 63, 651, 1395, 651, 63, 1;

%e 1, 127, 2667, 11811, 11811, 2667, 127, 1; ...

%e from which we can illustrate the initial terms of this sequence:

%e a(0) = 1^2 = 1;

%e a(1) = 1^2 + 1^2 = 2;

%e a(2) = 1^2 + 3^2 + 1^2 = 11;

%e a(3) = 1^2 + 7^2 + 7^2 + 1^2 = 100;

%e a(4) = 1^2 + 15^2 + 35^2 + 15^2 + 1^2 = 1677;

%e a(5) = 1^2 + 31^2 + 155^2 + 155^2 + 31^2 + 1^2 = 49974;

%e a(6) = 1^2 + 63^2 + 651^2 + 1395^2 + 651^2 + 63^2 + 1^2 = 2801567; ...

%t a[n_] := Sum[QBinomial[n, k, 2]^2, {k, 0, n}]; Table[a[n], {n, 0, 16}] (* _Jean-François Alcover_, Apr 09 2016 *)

%o (PARI) {A022166(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}

%o {a(n)=sum(k=0,n,A022166(n, k)^2)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A022166, A243951, A359313.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 21 2014