Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jun 05 2022 03:39:31
%S 0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,
%T 0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,2,2,1,2,2,0,0,0,2,1,1,2,1,1,2,0,0,0,0,
%U 0,1,1,1,1,1,1,0,0,0,0,1,1,0,2,2,1,2,2
%N Triangle T(m,k): exponent of the highest power of 3 dividing the binomial coefficient binomial(m,k).
%C T(m,k) is the number of 'carries' that occur when adding k and n-k in base 3 using the traditional addition algorithm.
%H Robert Israel, <a href="/A243759/b243759.txt">Table of n, a(n) for n = 0..10010</a>
%H Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
%F T(m,k) = log_3(A242849(m,k)).
%F From _Antti Karttunen_, Oct 28 2014: (Start)
%F a(n) = A007949(A007318(n)).
%F a(n) * A083093(n) = 0 and a(n) + A083093(n) > 0 for all n.
%F (End)
%e The triangle begins:
%e 0,
%e 0, 0,
%e 0, 0, 0,
%e 0, 1, 1, 0;
%e 0, 0, 1, 0, 0;
%e 0, 0, 0, 0, 0, 0;
%e 0, 1, 1, 0, 1, 1, 0;
%e 0, 0, 1, 0, 0, 1, 0, 0;
%e 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e 0, 2, 2, 1, 2, 2, 1, 2, 2, 0;
%p A243759:= (m,k) -> padic[ordp](binomial(m,k),3);
%p for m from 0 to 50 do
%p seq(A243759(m,k),k=0..m)
%p od; # _Robert Israel_, Jun 15 2014
%t T[m_, k_] := IntegerExponent[Binomial[m, k], 3];
%t Table[T[m, k], {m, 0, 12}, {k, 0, m}] // Flatten (* _Jean-François Alcover_, Jun 05 2022 *)
%o (Sage)
%o m=50
%o T=[0]+[3^valuation(i, 3) for i in [1..m]]
%o Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]]
%o [log(Integer(x),base=3) for sublist in Table for x in sublist]
%o (Scheme) (define (A243759 n) (A007949 (A007318 n))) ;; _Antti Karttunen_, Oct 28 2014
%Y Row sums: A249343.
%Y Cf. A007318, A007949, A083093, A065040, A242849, A060828, A038500.
%K nonn,tabl
%O 0,47
%A _Tom Edgar_, Jun 10 2014
%E Name clarified by _Antti Karttunen_, Oct 28 2014