OFFSET
1,2
COMMENTS
Suppose that m >= 3, and define sets h(n) of positive rational numbers as follows: h(n) = {n} for n = 1..m, and thereafter, h(n) = Union({x+1: x in h(n-1)}, {x/(x+1) : x in h(n-m)}), with the numbers in h(n) arranged in decreasing order. Every positive rational lies in exactly one of the sets h(n). For the present array, put m = 4 and (row n) = h(n); the number of numbers in h(n) is A003269(n-1). (For m = 3, see A243712.)
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..6000
EXAMPLE
First 9 rows of the array:
1/1
2/1
3/1
4/1
5/1 .. 1/2
6/1 .. 3/2 .. 2/3
7/1 .. 5/2 .. 5/3 ... 3/4
8/1 .. 7/2 .. 8/3 ... 7/4 ... 4/5
9/1 .. 9/2 .. 11/3 .. 11/4 .. 9/5 .. 5/6 .. 1/3
The numerators, by rows: 1,2,3,4,5,1,6,3,2,7,5,5,3,8,7,8,7,4,9,9,11,11,9,5,1...
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy,tabf,frac
AUTHOR
Clark Kimberling, Jun 09 2014
STATUS
approved