login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243572
Irregular triangular array generated as in Comments; contains every positive integer exactly once.
4
1, 2, 3, 4, 6, 9, 5, 7, 10, 12, 18, 27, 8, 11, 13, 15, 19, 21, 28, 30, 36, 54, 81, 14, 16, 20, 22, 24, 29, 31, 33, 37, 39, 45, 55, 57, 63, 82, 84, 90, 108, 162, 243, 17, 23, 25, 32, 34, 38, 40, 42, 46, 48, 56, 58, 60, 64, 66, 72, 83, 85, 87, 91, 93, 99, 109
OFFSET
1,2
COMMENTS
Decree that row 1 is (1), row 2 is (2, 3), and row 3 is (4, 6, 9). Let r(n) = A001590(n+2), so that r(r) = r(n-1) + r(n-2) + r(n-3) with r(1) =1, r(2) = 2, r(3) = 3. Row n of the array, for n >= 4, consists of the numbers, in increasing order, defined as follows: all 3*x from x in row n-1, together with all 1 + 3*x from x in row n-2, together with all 2 + 3*x from x in row n-3. Thus, the number of numbers in row n is r(n), a tribonacci number. Every positive integer occurs exactly once in the array, so that the resulting sequence is a permutation of the positive integers.
LINKS
EXAMPLE
First 5 rows of the array:
1
2 ... 3
4 ... 6 ... 9
5 ... 7 ... 10 .. 12 .. 18 .. 27
8 ... 11 .. 13 .. 15 .. 19 .. 21 .. 28 .. 30 .. 36 .. 54 .. 81
MATHEMATICA
z = 10; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 3 x; h[1] = g[1];
b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
u = Table[g[n], {n, 1, z}]; v = Flatten[u] (* A243572 *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Clark Kimberling, Jun 07 2014
STATUS
approved