login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243155
Larger of the two consecutive primes whose positive difference is a cube.
1
3, 97, 367, 397, 409, 457, 487, 499, 691, 709, 727, 751, 769, 919, 937, 991, 1117, 1171, 1201, 1381, 1447, 1531, 1567, 1579, 1741, 1831, 1987, 2011, 2161, 2221, 2251, 2281, 2467, 2539, 2617, 2671, 2707, 2749, 2851, 2887, 2917, 3019, 3049, 3217, 3229, 3457, 3499
OFFSET
1,1
COMMENTS
Observation: All the terms in this sequence, after a(1), are the larger of the two consecutive primes which have positive difference either 2^3 or 4^3.
Superset of A031927 as the sequence contains for example numbers like 89753, 107441, 288647,.. (with gaps of 4^3...) that are not in A031927. - R. J. Mathar, Jun 06 2014
LINKS
EXAMPLE
97 is prime and appears in the sequence because 97 - 89 = 8 = 2^3.
397 is prime and appears in the sequence because 397 - 389 = 8 = 2^3.
MAPLE
A243155:= proc() local a; a:=evalf((ithprime(n+1)-ithprime(n))^(1/3)); if a=floor(a) then RETURN (ithprime(n+1)); fi; end: seq(A243155 (), n=1..100);
MATHEMATICA
n = 0; Do[t = Prime[k] - Prime[k - 1]; If[IntegerQ[t^(1/3)], n++; Print[n, " ", Prime[k]]], {k, 2, 15*10^4}]
PROG
(PARI) s=[]; forprime(p=3, 4000, if(ispower(p-precprime(p-1), 3), s=concat(s, p))); s \\ Colin Barker, Jun 03 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 31 2014
STATUS
approved