login
Palindromes of length greater than 1 in decimal expansion of Blazys's constant (A233588).
0

%I #5 May 28 2014 23:10:57

%S 5665,66,383,171,88,888,88,44,444,44,33,22,575,282,828,464,969,33,525,

%T 66,99,989,40,0,22,88,5665,66,3003,0,383,8338,33,62526,252,55,808,585,

%U 33,99,545,77,44,0,11,44,282,696,99,44,444,44,646,919,212,0,99,44,444,44,353,535,595,252,22

%N Palindromes of length greater than 1 in decimal expansion of Blazys's constant (A233588).

%C Begin with the left (most significant) k digits and sequentially remove the first j leading digits until a palindrome is found; continue.

%C a(23) is actually 040 (which should be obvious), a(24) is 00, a(30) is 00, a(44) is 00, a(56) is 00, etc.

%C If the Blazys's constant is a normal number then all palindromes should eventually appear.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/NormalNumber.html">Normal Number</a>

%H <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>

%e Blazys's constant is 2.566543832171388844467529106332285751782972828702314645...

%t bc = RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Prime@ Range@ 1000], 10, 1000][[1]]; palQ[n_] := n == Reverse[n]; k = 1; lst = {}; While[j = k + 1; k < 600, While[j < 600 - k, If[ palQ[ Take[ bc, {k, j}]], p = FromDigits[ Take[ bc, {k, j}]]; AppendTo[lst, p]; Print[p]]; j++]; k++]; lst

%Y Cf. A002113, A068046, A226536, A233588.

%K nonn,base

%O 1,1

%A _Robert G. Wilson v_, May 27 2014