login
A242740
Numbers n dividing every cyclic permutation of n^4.
1
1, 3, 9, 21, 27, 73, 99, 111, 271, 693, 707, 777, 819, 909, 999, 2151, 2629, 3441, 3813, 4551, 6987, 7227, 7373, 9999, 18981, 19019, 20007, 20979, 23199, 24453, 25641, 27027, 27417, 30303, 81819, 82113, 83883, 99999, 125523, 172013, 194841, 201917, 238139
OFFSET
1,2
COMMENTS
Property of the sequence :
Consider the sequence A178028 (Numbers n dividing every cyclic permutation of n^2), so
a(1) = A178028 (1) = 1;
a(5) = A178028 (5) = 27;
a(7) = A178028 (7) = 99;
a(9) = A178028 (9) = 271;
a(10) = A178028 (15) = 693;
a(13) = A178028 (17) = 819;
a(15) = A178028 (18) = 999;
a(16) = A178028 (19) = 2151;
a(22) = A178028 (22) = 7227;
...........................
EXAMPLE
21 is a member as all the six cyclic permutations of 21^4 = 194481 are :
{194481, 944811, 448119, 481194, 811944, 119448} and :
194481 = 21*9261;
944811 = 21*44991;
448119 = 21*21339;
811944 = 21*38664;
119448 = 21*5688.
MATHEMATICA
Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^4], n], {n, IntegerLength[#^4]}], #]&]
CROSSREFS
Sequence in context: A014945 A045590 A369768 * A372901 A029536 A331131
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, May 21 2014
STATUS
approved