OFFSET
1,6
COMMENTS
An s-line partition is a planar partition into at most s rows. s-line partitions of n are equinumerous with partitions of n with min(k,s) sorts of part k (cf. the g.f.). - Joerg Arndt, Feb 18 2015
Row s is asymptotic to (Product_{j=1..s-1} j!) * Pi^(s*(s-1)/2) * s^((s^2 + 1)/4) * exp(Pi*sqrt(2*n*s/3)) / (2^((s*(s+2)+5)/4) * 3^((s^2 + 1)/4) * n^((s^2 + 3)/4)). - Vaclav Kotesovec, Oct 28 2015
LINKS
Alois P. Heinz, Antidiagonals n = 1..200, flattened
P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II.
FORMULA
G.f. for row s: Product_{i=1..s} (1-q^i)^(-i) * Product_{j >= s+1} (1-q^j)^(-s). [MacMahon]
EXAMPLE
Array begins:
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...
1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ...
1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ...
1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ...
1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ...
1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ...
1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 858, 1476, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1478, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, ...
...
MAPLE
# Maple code for the square array:
M:=100:
F:=s->mul((1-q^i)^(-i), i=1..s)*mul((1-q^j)^(-s), j=s+1..M);
A:=(s, n)->coeff(series(F(s), q, M), q, n);
for s from 1 to 12 do lprint( [seq(A(s, j), j=0..12)]); od:
# second Maple program:
B:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s)
*d, d=numtheory[divisors](j))*B(s, n-j), j=1..n)/n)
end:
seq(seq(B(d-n, n), n=0..d-1), d=1..14); # Alois P. Heinz, Oct 02 2018
MATHEMATICA
M=100; F[s_] := Product[(1-q^i)^-i, {i, 1, s}]*Product[(1-q^j)^-s, {j, s+1, M}]; A[s_, n_] := Coefficient[Series[F[s], {q, 0, M}], q, n]; Table[A[s-j, j], {s, 1, 12}, {j, 0, s-1}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Maple code *)
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 21 2014
STATUS
approved