login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242641
Array read by antidiagonals upwards: B(s,n) ( s>=1, n >= 0) = number of s-line partitions of n.
11
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 5, 5, 1, 1, 3, 6, 10, 7, 1, 1, 3, 6, 12, 16, 11, 1, 1, 3, 6, 13, 21, 29, 15, 1, 1, 3, 6, 13, 23, 40, 45, 22, 1, 1, 3, 6, 13, 24, 45, 67, 75, 30, 1, 1, 3, 6, 13, 24, 47, 78, 117, 115, 42, 1, 1, 3, 6, 13, 24, 48, 83, 141, 193, 181, 56, 1, 1, 3, 6, 13, 24, 48, 85, 152, 239, 319, 271, 77
OFFSET
1,6
COMMENTS
An s-line partition is a planar partition into at most s rows. s-line partitions of n are equinumerous with partitions of n with min(k,s) sorts of part k (cf. the g.f.). - Joerg Arndt, Feb 18 2015
Row s is asymptotic to (Product_{j=1..s-1} j!) * Pi^(s*(s-1)/2) * s^((s^2 + 1)/4) * exp(Pi*sqrt(2*n*s/3)) / (2^((s*(s+2)+5)/4) * 3^((s^2 + 1)/4) * n^((s^2 + 3)/4)). - Vaclav Kotesovec, Oct 28 2015
LINKS
P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II.
FORMULA
G.f. for row s: Product_{i=1..s} (1-q^i)^(-i) * Product_{j >= s+1} (1-q^j)^(-s). [MacMahon]
EXAMPLE
Array begins:
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...
1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ...
1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ...
1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ...
1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ...
1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ...
1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 858, 1476, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1478, ...
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, ...
...
MAPLE
# Maple code for the square array:
M:=100:
F:=s->mul((1-q^i)^(-i), i=1..s)*mul((1-q^j)^(-s), j=s+1..M);
A:=(s, n)->coeff(series(F(s), q, M), q, n);
for s from 1 to 12 do lprint( [seq(A(s, j), j=0..12)]); od:
# second Maple program:
B:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s)
*d, d=numtheory[divisors](j))*B(s, n-j), j=1..n)/n)
end:
seq(seq(B(d-n, n), n=0..d-1), d=1..14); # Alois P. Heinz, Oct 02 2018
MATHEMATICA
M=100; F[s_] := Product[(1-q^i)^-i, {i, 1, s}]*Product[(1-q^j)^-s, {j, s+1, M}]; A[s_, n_] := Coefficient[Series[F[s], {q, 0, M}], q, n]; Table[A[s-j, j], {s, 1, 12}, {j, 0, s-1}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Maple code *)
CROSSREFS
Main diagonal = A000219.
See A242642 for the upper triangle of the array.
Sequence in context: A157458 A174447 A174374 * A347187 A027948 A360335
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 21 2014
STATUS
approved