login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242641 Array read by antidiagonals upwards: B(s,n) ( s>=1, n >= 0) = number of s-line partitions of n. 11
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 5, 5, 1, 1, 3, 6, 10, 7, 1, 1, 3, 6, 12, 16, 11, 1, 1, 3, 6, 13, 21, 29, 15, 1, 1, 3, 6, 13, 23, 40, 45, 22, 1, 1, 3, 6, 13, 24, 45, 67, 75, 30, 1, 1, 3, 6, 13, 24, 47, 78, 117, 115, 42, 1, 1, 3, 6, 13, 24, 48, 83, 141, 193, 181, 56, 1, 1, 3, 6, 13, 24, 48, 85, 152, 239, 319, 271, 77 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

An s-line partition is a planar partition into at most s rows. s-line partitions of n are equinumerous with partitions of n with min(k,s) sorts of part k (cf. the g.f.). - Joerg Arndt, Feb 18 2015

Row s is asymptotic to (Product_{j=1..s-1} j!) * Pi^(s*(s-1)/2) * s^((s^2 + 1)/4) * exp(Pi*sqrt(2*n*s/3)) / (2^((s*(s+2)+5)/4) * 3^((s^2 + 1)/4) * n^((s^2 + 3)/4)). - Vaclav Kotesovec, Oct 28 2015

LINKS

Alois P. Heinz, Antidiagonals  n = 1..200, flattened

P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II.

FORMULA

G.f. for row s: Product_{i=1..s} (1-q^i)^(-i) * Product_{j >= s+1} (1-q^j)^(-s). [MacMahon]

EXAMPLE

Array begins:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...

1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ...

1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ...

1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ...

1, 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ...

1, 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ...

1, 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ...

1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, ...

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, ...

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 858, 1476, ...

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1478, ...

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, ...

...

MAPLE

# Maple code for the square array:

M:=100:

F:=s->mul((1-q^i)^(-i), i=1..s)*mul((1-q^j)^(-s), j=s+1..M);

A:=(s, n)->coeff(series(F(s), q, M), q, n);

for s from 1 to 12 do lprint( [seq(A(s, j), j=0..12)]); od:

# second Maple program:

B:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s)

      *d, d=numtheory[divisors](j))*B(s, n-j), j=1..n)/n)

    end:

seq(seq(B(d-n, n), n=0..d-1), d=1..14);  # Alois P. Heinz, Oct 02 2018

MATHEMATICA

M=100; F[s_] := Product[(1-q^i)^-i, {i, 1, s}]*Product[(1-q^j)^-s, {j, s+1, M}]; A[s_, n_] := Coefficient[Series[F[s], {q, 0, M}], q, n]; Table[A[s-j, j], {s, 1, 12}, {j, 0, s-1}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Maple code *)

CROSSREFS

Rows give A000041, A000990, A000991, A002799, A001452, A225196, A225197, A225198, A225199.

Main diagonal = A000219.

See A242642 for the upper triangle of the array.

Sequence in context: A157458 A174447 A174374 * A347187 A027948 A095141

Adjacent sequences:  A242638 A242639 A242640 * A242642 A242643 A242644

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, May 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:29 EST 2021. Contains 349526 sequences. (Running on oeis4.)