login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174447
Triangle T(n, k, q) = ceiling(binomial(n, k)/f(n, q)) with T(0, 0) = 1, f(n, q) = 1 + tanh((n-1)/q), and q = 4, read by rows.
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 4, 3, 1, 1, 3, 6, 6, 3, 1, 1, 4, 9, 11, 9, 4, 1, 1, 4, 12, 19, 19, 12, 4, 1, 1, 5, 15, 29, 37, 29, 15, 5, 1, 1, 5, 19, 43, 65, 65, 43, 19, 5, 1, 1, 6, 23, 61, 107, 128, 107, 61, 23, 6, 1, 1, 6, 28, 84, 167, 233, 233, 167, 84, 28, 6, 1
OFFSET
0,5
FORMULA
T(n, k, q) = ceiling(binomial(n, k)/f(n, q)) with T(0, 0) = 1, f(n, q) = 1 + tanh((n-1)/q), and q = 4.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 4, 3, 1;
1, 3, 6, 6, 3, 1;
1, 4, 9, 11, 9, 4, 1;
1, 4, 12, 19, 19, 12, 4, 1;
1, 5, 15, 29, 37, 29, 15, 5, 1;
1, 5, 19, 43, 65, 65, 43, 19, 5, 1;
1, 6, 23, 61, 107, 128, 107, 61, 23, 6, 1;
MATHEMATICA
f[n_, q_]= 1 + Tanh[(n-1)/q];
T[n_, k_, q_]= If[n==0, 1, Ceiling[Binomial[n, k]/f[n, q]]];
Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
T:= func< n, k, q | n eq 0 select 1 else Ceiling(Binomial(n, k)/(1 + Tanh((n-1)/q))) >;
[T(n, k, 4): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 05 2021
(Sage)
def T(n, k, q): return 1 if (n==0) else ceil(binomial(n, k)/(1 + tanh((n-1)/q)))
flatten([[T(n, k, 4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 05 2021
CROSSREFS
Cf. A174446 (q=1), this sequence (q=4), A174448 (q=12).
Sequence in context: A160832 A351522 A157458 * A174374 A242641 A347187
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 20 2010
EXTENSIONS
Edited by G. C. Greubel, Aug 05 2021
STATUS
approved