login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242589
Primes p such that p = the cumulative sum of the digit-sum in base 15 of the digit-product in base 4 of each prime < p.
0
5, 19, 37, 43, 97, 107, 6091, 6389, 7121, 21727, 147107, 148151, 148279, 148429, 148469, 172877, 173209, 173741, 2621387, 5642293, 5642321, 8932771, 8981827, 8981879, 9094979, 9095089, 9997783, 10010687, 10010789, 10037749, 10144523, 40179929, 40365217, 40379077, 40379197, 40386811, 40612933
OFFSET
1,1
FORMULA
sum = sum + digit-sum(digit-mult(prime,base=4),base=15). The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, the digit-sum in base 15 of the digit-mult(333) in base 4 = digit-sum(3 * 3 * 3) = digit-sum(1C) = 1 + C = 13. (1C in base 15 = 27 in base 10).
EXAMPLE
5 = digit-sum(digit-mult(2,b=4),b=15) + sum(mult(3,b=4),b=15) = 2 + 3.
19 = digit-sum(digit-mult(2,b=4),b=15) + sum(mult(3,b=4),b=15) + sum(mult(11,b=4),b=15) + sum(mult(13,b=4),b=15) + sum(mult(23,b=4),b=15) + sum(mult(31,b=4),b=15) + sum(mult(101,b=4),b=15) = 2 + 3 + 1 + 3 + 6 + 3 + 1.
CROSSREFS
Cf. A240886 (similar sequence with digit sums in base 3).
Sequence in context: A029523 A289289 A213631 * A232057 A031093 A297750
KEYWORD
nonn,base
AUTHOR
Anthony Sand, May 20 2014
STATUS
approved