login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242355
Sum of squared end-to-end distances of all n-step self-avoiding walks on the 4-d cubic lattice.
4
8, 128, 1416, 13568, 119960, 1009440, 8205656, 65068352, 506193144, 3879735776, 29378067080, 220265711040, 1637726387096, 12091336503584, 88727095777896, 647661676223168, 4705654523841704, 34049855885188128, 245482626441965048, 1764039730476165824
OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..24 [4th column in Table A6 from Clisby article below]
N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017.
N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion. Tables in machine-readable format.
CROSSREFS
Cf. A010575 corresponding number of walks, A118313 end-to-end distances for cubic lattice, A078797 end-to-end distances for quadratic lattice, A323856, A323857.
Sequence in context: A301998 A105094 A208711 * A305519 A316956 A036294
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 16 2014
STATUS
approved