The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242355 Sum of squared end-to-end distances of all n-step self-avoiding walks on the 4-d cubic lattice. 4
8, 128, 1416, 13568, 119960, 1009440, 8205656, 65068352, 506193144, 3879735776, 29378067080, 220265711040, 1637726387096, 12091336503584, 88727095777896, 647661676223168, 4705654523841704, 34049855885188128, 245482626441965048, 1764039730476165824 (list; graph; refs; listen; history; text; internal format)



Hugo Pfoertner, Table of n, a(n) for n = 1..24 [4th column in Table A6 from Clisby article below]

N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017.

N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion. Tables in machine-readable format.

Hugo Pfoertner, Results for the 4D Self-Trapping Random Walk.


Cf. A010575 corresponding number of walks, A118313 end-to-end distances for cubic lattice, A078797 end-to-end distances for quadratic lattice, A323856, A323857.

Sequence in context: A301998 A105094 A208711 * A305519 A316956 A036294

Adjacent sequences:  A242352 A242353 A242354 * A242356 A242357 A242358




Hugo Pfoertner, Aug 16 2014



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)