login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242065
Smallest k such that the union of {A242059(i): 1 <= i <= k} and {A242060(i): 1 <= i <= k} includes all primes {5, ..., prime(n)}.
2
2, 3, 4, 8, 8, 17, 17, 17, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 179, 179, 179, 179, 179, 179, 179, 179, 264, 264, 264, 319, 319, 319, 319, 365, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 4372, 4372, 4372, 4372, 4372, 15504, 15504
OFFSET
3,1
MATHEMATICA
lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (*least prime factor*)
lpf3[n_]:=lpf3[n]=If[#==1, 1, lpf[#]]&[n/3^IntegerExponent[n, 3]];
A242059=Map[lpf3[#-1]&, Select[Range[4, 100000, 2], lpf3[#-1]<lpf3[#-3]&](*A242057*)];
A242060=Map[lpf3[#-3]&, Select[Range[4, 100000, 2], lpf3[#-1]>lpf3[#-3]&](*A242058*)];
pos={}; NestWhile[#+1&, 3, (AppendTo[pos, Min[Position[A242059, Prime[#], 1, 1], Position[A242060, Prime[#], 1, 1]/.{}->0]]; !Last[pos]==0)&];
A242065=Rest[FoldList[Max, -Infinity, Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 13 2014
EXTENSIONS
More terms from Peter J. C. Moses, Aug 14 2014
STATUS
approved