login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242061
Position within the triangular array A226314(n)/A054531(n) of rationals x/y such that x < y, gcd(x,y)=1, x+y odd and for the least y, {x, y} are integers such that x*y(y^2-x^2)/A006991(n) is a perfect square.
0
14, 2, 129, 52686, 29, 7, 9, 1274, 296125969, 12012350, 5, 1279281, 44, 302583265614, 780914, 90, 316, 2605, 106023820090609, 1754402265205275806, 7794, 72957466300254, 768323201, 40, 18505, 23, 6478321, 3966329, 326, 14280500082452241
OFFSET
1,1
COMMENTS
The triangle array A226314(n)/A054531(n) that enumerates all positive rationals x/y can be generalized to enumerate all ordered pairs {x, y} where x and y are natural numbers. For example, A243808 uses a subset of this triangular array to enumerate all primitive Pythagorean triples (PPT).
A006991(n) is the sequence of primitive congruent numbers and by definition there exists a PPT whose area is equal to k^2*A006991(n) for some integer k. a(n) is an enumeration of these PPT's and is a measure of the number of Pythagorean triangles that have to be searched to find a PPT with the least hypotenuse that has an area equal to k^2*A006991(n). If {x, y} are the generators of a PPT (a, b, c) where a = y^2-x^2, b = 2x*y, c=y^2+x^2 then its area = x*y(y^2-x^2). The Mathematica program limits searches to the first 12.5 million generated PPT's. All other results have been obtained from tables catalogued by Hisanori Mishima (see Links).
LINKS
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
Hisanori Mishima, 361 Congruent Numbers g: 1<=g<=999, Mathematician's Secret Room, Chapter 10 : Congruent Numbers (D27 Congruent numbers).
Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
EXAMPLE
. j {A226314(n),A054531(n)}, 1<=i<=j<=12 and n=i+j(j-1)/2
. -- --------------------------------------------------------
. 1: 1,1
. 2: 1,2 2,1
. 3: 1,3 2,3 3,1
. 4: 1,4 3,2 3,4 4,1
. 5: 1,5 2,5 3,5 4,5 5,1
. 6: 1,6 4,3 5,2 5,3 5,6 6,1
. 7: 1,7 2,7 3,7 4,7 5,7 6,7 7,1
. 8: 1,8 5,4 3,8 7,2 5,8 7,4 7,8 8,1
. 9: 1,9 2,9 7,3 4,9 5,9 8,3 7,9 8,9 9,1
. 10: 1,10 6,5 3,10 7,5 9,2 8,5 7,10 9,5 9,10 10,1
. 11: 1,11 2,11 3,11 4,11 5,11 6,11 7,11 8,11 9,11 10,11 11,1
. 12: 1,12 7,6 9,4 10,3 5,12 11,2 7,12 11,3 11,4 11,6 11,12 12,1 .
a(13)=44 and A006991(13)=34 so 34 is the 13th congruent number. a(13) gives the 44th term of the triangular array at index (8, 9). This gives (x, y) as (8, 9), it generates the PPT (17, 144, 145) and has an area 6^2*34 = 1224.
MATHEMATICA
lst1={5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101}; getpos[n0_] := (lst=0; Do[If[IntegerQ@Sqrt[m*n(m-n)(m+n)/n0]&&OddQ[m+n] && GCD[m, n]==1, (lst=m(m-1)/2+n; Break[])], {m, 2, 5000}, {n, 1, m-1}]; lst); SetAttributes[getpos, Listable]; getpos[lst1]
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Aug 13 2014
STATUS
approved