login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of perfect matchings in graph P_{13} X P_{2n}.
2

%I #12 Apr 13 2020 19:51:13

%S 1,377,413351,536948224,731164253833,1012747193318519,

%T 1412218550274852671,1974622635952709613247,2764079753958605286860951,

%U 3870940598132705729413670953,5422065916132126528319352874496,7595338059193606161156363370300487,10640045682768766172108553992086690201

%N Number of perfect matchings in graph P_{13} X P_{2n}.

%C In Karavaev and Perepechko generating functions G_m(x) for P_m X P_n graphs were found for all values of m up to 27.

%D A. M. Karavaev and S. N. Perepechko, Generating functions for dimer problem on rectangular lattices (in Russian), Information Processes, 13(2013), No4, 374-400.

%H Sergey Perepechko, <a href="/A241908/a241908.pdf">Generating function for A241908</a>

%o (PARI) {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 2, I*x/2)))} \\ _Seiichi Manyama_, Apr 13 2020

%Y Row 13 of array A099390.

%Y Cf. A028470, A028471, A028472, A028473, A028474, A187596.

%K nonn,easy

%O 0,2

%A _Sergey Perepechko_, May 01 2014