login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241908
Number of perfect matchings in graph P_{13} X P_{2n}.
2
1, 377, 413351, 536948224, 731164253833, 1012747193318519, 1412218550274852671, 1974622635952709613247, 2764079753958605286860951, 3870940598132705729413670953, 5422065916132126528319352874496, 7595338059193606161156363370300487, 10640045682768766172108553992086690201
OFFSET
0,2
COMMENTS
In Karavaev and Perepechko generating functions G_m(x) for P_m X P_n graphs were found for all values of m up to 27.
REFERENCES
A. M. Karavaev and S. N. Perepechko, Generating functions for dimer problem on rectangular lattices (in Russian), Information Processes, 13(2013), No4, 374-400.
PROG
(PARI) {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(13, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
CROSSREFS
Row 13 of array A099390.
Sequence in context: A352264 A222350 A277942 * A198407 A003918 A350183
KEYWORD
nonn,easy
AUTHOR
Sergey Perepechko, May 01 2014
STATUS
approved