login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241845
a(1)=1; for n >1 a(n) is the smallest prime divisor of the number obtained from concatenation of 1 and the first n-1 composites.
5
1, 2, 2, 2, 37, 2, 2, 2, 5, 2, 2, 2, 27793, 2, 2, 3, 2, 29, 2, 2, 2, 19, 2, 5, 2, 2, 1468910121415161820212224252627283032333435363839, 2, 2, 2, 5, 2, 2, 3, 2, 127, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2
OFFSET
1,2
COMMENTS
a(1)=1, and for n > 1 a(n) is the smallest prime divisor of the number obtained from the concatenation of A018252(j), j=1, ..., n. - Wolfdieter Lang, May 07 2014
LINKS
EXAMPLE
1 U 4 = 14 and its divisors are 1, 2, 7, 14. Then a(2) = 2.
14 U 6 = 146 and its divisors are 1, 2, 73, 146. Then a(3) = 2.
146 U 8 = 1468 and its divisors are 1, 2, 4, 734, 367, 1468. Then a(4) = 2.
1468 U 9 = 14689 and its divisors are 1, 37, 397, 14689. Then a(5) = 37. Etc.
MAPLE
with(numtheory):
T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, n; b:=1; print(1); for n from 2 to q do if not isprime(n) then b:=n+b*10^T(n); a:=sort([op(divisors(b))]); print(a[2]);
fi; od; end: P(10^6); # Paolo P. Lava, Apr 30 2014
MATHEMATICA
Module[{nn=70, cmps}, cmps=Select[Range[nn], CompositeQ]; Join[ {1}, SelectFirst[ Divisors[#], PrimeQ]&/@FromDigits/@Table[ Join[ {1}, Flatten[ IntegerDigits/@Take[cmps, n]]], {n, Length[cmps]}]]] (* Harvey P. Dale, Jul 27 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 30 2014
EXTENSIONS
More terms from Jinyuan Wang, Jun 27 2020
STATUS
approved