login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241845 a(1)=1; for n >1 a(n) is the smallest prime divisor of the number obtained from concatenation of 1 and the first n-1 composites. 5
1, 2, 2, 2, 37, 2, 2, 2, 5, 2, 2, 2, 27793, 2, 2, 3, 2, 29, 2, 2, 2, 19, 2, 5, 2, 2, 1468910121415161820212224252627283032333435363839, 2, 2, 2, 5, 2, 2, 3, 2, 127, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(1)=1, and for n > 1 a(n) is the smallest prime divisor of the number obtained from the concatenation of A018252(j), j=1, ..., n. - Wolfdieter Lang, May 07 2014
LINKS
EXAMPLE
1 U 4 = 14 and its divisors are 1, 2, 7, 14. Then a(2) = 2.
14 U 6 = 146 and its divisors are 1, 2, 73, 146. Then a(3) = 2.
146 U 8 = 1468 and its divisors are 1, 2, 4, 734, 367, 1468. Then a(4) = 2.
1468 U 9 = 14689 and its divisors are 1, 37, 397, 14689. Then a(5) = 37. Etc.
MAPLE
with(numtheory):
T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, n; b:=1; print(1); for n from 2 to q do if not isprime(n) then b:=n+b*10^T(n); a:=sort([op(divisors(b))]); print(a[2]);
fi; od; end: P(10^6); # Paolo P. Lava, Apr 30 2014
MATHEMATICA
Module[{nn=70, cmps}, cmps=Select[Range[nn], CompositeQ]; Join[ {1}, SelectFirst[ Divisors[#], PrimeQ]&/@FromDigits/@Table[ Join[ {1}, Flatten[ IntegerDigits/@Take[cmps, n]]], {n, Length[cmps]}]]] (* Harvey P. Dale, Jul 27 2021 *)
CROSSREFS
Sequence in context: A083148 A368204 A318166 * A254131 A339014 A175910
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 30 2014
EXTENSIONS
More terms from Jinyuan Wang, Jun 27 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 10:18 EST 2024. Contains 370548 sequences. (Running on oeis4.)