login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241488
Primes p such that p+8, p+888 and p+8888 are also prime.
1
53, 263, 389, 431, 983, 1013, 1061, 1223, 1571, 1823, 2789, 3323, 3533, 3911, 4211, 5849, 6563, 6653, 7019, 7481, 8369, 8963, 9041, 9173, 9413, 9539, 9803, 10091, 10559, 10979, 12611, 12689, 12911, 13163, 13751, 13781, 14243, 14879, 15083, 16691, 17231, 17483
OFFSET
1,1
COMMENTS
All the terms in the sequence are congruent to 2 mod 3.
The constants in the definition (8, 888 and 8888) are the concatenation of digit 8.
LINKS
EXAMPLE
a(1) = 53 is a prime: 53+8 = 61, 53+888 = 941 and 53+8888 = 8941 are also prime.
a(2) = 263 is a prime: 263+8 = 271, 263+888 = 1151 and 263+8888 = 9151 are also prime.
MAPLE
KD:= proc() local a, b, d, e; a:= ithprime(n); b:=a+8; d:=a+888; e:=a+8888; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..5000);
MATHEMATICA
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 8] && PrimeQ[p + 888] && PrimeQ[p + 8888], AppendTo[KD, p]], {n, 5000}]; KD
(*For the b-file*) c = 0; p = Prime[n]; Do[If[PrimeQ[p + 8] && PrimeQ[p + 888] && PrimeQ[p + 8888], c = c + 1; Print[c, " ", p]], {n, 1, 5*10^6}];
Select[Prime[Range[2500]], AllTrue[#+{8, 888, 8888}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 31 2017 *)
PROG
(PARI) s=[]; forprime(p=2, 18000, if(isprime(p+8) && isprime(p+888) && isprime(p+8888), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 23 2014
STATUS
approved