login
A241397
T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
11
2, 2, 3, 4, 5, 4, 6, 9, 13, 7, 8, 23, 29, 28, 10, 14, 44, 85, 97, 64, 15, 20, 93, 201, 480, 340, 142, 24, 30, 204, 689, 1657, 2780, 1156, 318, 35, 48, 368, 1929, 8697, 15339, 17211, 4068, 726, 54, 70, 761, 4068, 31654, 129985, 160947, 102782, 14763, 1634, 83, 108
OFFSET
1,1
COMMENTS
Table starts
..2....2......4........6..........8..........14..........20.........30
..3....5......9.......23.........44..........93.........204........368
..4...13.....29.......85........201.........689........1929.......4068
..7...28.....97......480.......1657........8697.......31654......92204
.10...64....340.....2780......15339......129985......667050....2949778
.15..142...1156....17211.....160947.....2234804....18589398..134190457
.24..318...4068...102782....1622867....39781828...541660724.7518340973
.35..726..14763...645484...18627122...821631365.21331876978
.54.1634..52950..3936420..196990531.16108803423
.83.3695.190950.24633252.2356216195
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 38]
Empirical for row n:
n=1: a(n) = a(n-2) +2*a(n-3)
n=2: [order 22] for n>23
EXAMPLE
Some solutions for n=4 k=4
..3..2..3..3....3..2..2..2....2..3..3..2....2..3..3..2....2..3..3..2
..1..2..1..2....2..1..0..0....2..1..2..0....2..3..2..2....1..3..1..2
..3..2..0..0....3..1..2..0....3..0..0..2....2..0..0..3....1..2..0..2
..1..0..0..0....3..2..0..0....2..0..1..0....2..1..1..3....3..2..2..2
CROSSREFS
Column 1 is A159288(n+1)
Row 1 is A239851
Sequence in context: A275495 A022820 A292259 * A331049 A350127 A320159
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 20 2014
STATUS
approved