login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241328
T(n,k)=Number of nXk 0..3 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..3 introduced in row major order
11
1, 1, 2, 2, 8, 5, 5, 59, 85, 15, 14, 530, 2344, 1030, 51, 41, 4877, 68935, 95144, 13011, 187, 122, 45057, 2034543, 8949808, 3875244, 165924, 715, 365, 416533, 60066019, 842185933, 1162535788, 157912026, 2121033, 2795, 1094, 3851085, 1773370241
OFFSET
1,3
COMMENTS
Table starts
...1.......1..........2..............5................14....................41
...2.......8.........59............530..............4877.................45057
...5......85.......2344..........68935...........2034543..............60066019
..15....1030......95144........8949808.........842185933...........79254376889
..51...13011....3875244.....1162535788......348722168314.......104609549355169
.187..165924..157912026...151022716125...144410575985227....138095118530911728
.715.2121033.6435036610.19619065042282.59802363257355728.182299462522915741748
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=2: [order 9] for n>10
k=3: [order 15]
k=4: [order 53]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2) for n>3
n=2: a(n) = 12*a(n-1) -26*a(n-2) +2*a(n-3) +28*a(n-4) -6*a(n-5) -9*a(n-6) for n>8
n=3: [order 11] for n>13
n=4: [order 36] for n>38
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1....0..1..2..1....0..1..2..1....0..1..0..2....0..1..0..1
..1..0..1..2....1..0..2..3....0..2..3..0....1..2..0..1....2..0..3..2
..1..0..3..0....0..2..0..1....1..3..2..3....3..2..1..3....3..1..2..0
CROSSREFS
Column 1 is A007581(n-1)
Row 1 is A007051(n-2)
Sequence in context: A075103 A021818 A336198 * A223041 A024558 A238452
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 19 2014
STATUS
approved