Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Apr 19 2014 12:37:44
%S 1,1,2,2,8,5,5,59,85,15,14,530,2344,1030,51,41,4877,68935,95144,13011,
%T 187,122,45057,2034543,8949808,3875244,165924,715,365,416533,60066019,
%U 842185933,1162535788,157912026,2121033,2795,1094,3851085,1773370241
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..3 introduced in row major order
%C Table starts
%C ...1.......1..........2..............5................14....................41
%C ...2.......8.........59............530..............4877.................45057
%C ...5......85.......2344..........68935...........2034543..............60066019
%C ..15....1030......95144........8949808.........842185933...........79254376889
%C ..51...13011....3875244.....1162535788......348722168314.......104609549355169
%C .187..165924..157912026...151022716125...144410575985227....138095118530911728
%C .715.2121033.6435036610.19619065042282.59802363257355728.182299462522915741748
%H R. H. Hardin, <a href="/A241328/b241328.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
%F k=2: [order 9] for n>10
%F k=3: [order 15]
%F k=4: [order 53]
%F Empirical for row n:
%F n=1: a(n) = 4*a(n-1) -3*a(n-2) for n>3
%F n=2: a(n) = 12*a(n-1) -26*a(n-2) +2*a(n-3) +28*a(n-4) -6*a(n-5) -9*a(n-6) for n>8
%F n=3: [order 11] for n>13
%F n=4: [order 36] for n>38
%e Some solutions for n=3 k=4
%e ..0..1..0..1....0..1..2..1....0..1..2..1....0..1..0..2....0..1..0..1
%e ..1..0..1..2....1..0..2..3....0..2..3..0....1..2..0..1....2..0..3..2
%e ..1..0..3..0....0..2..0..1....1..3..2..3....3..2..1..3....3..1..2..0
%Y Column 1 is A007581(n-1)
%Y Row 1 is A007051(n-2)
%K nonn,tabl
%O 1,3
%A _R. H. Hardin_, Apr 19 2014