login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241099
Primes p such that (p^3 + 4)/3 is prime.
1
5, 23, 53, 113, 173, 197, 269, 317, 383, 443, 557, 563, 587, 647, 659, 773, 797, 827, 947, 983, 1097, 1103, 1187, 1217, 1229, 1889, 1913, 1949, 2039, 2099, 2153, 2213, 2339, 2357, 2399, 2417, 2447, 2579, 2693, 2837, 2879, 2897, 2903, 2939, 2969, 3089, 3203
OFFSET
1,1
LINKS
EXAMPLE
5 is prime and appears in the sequence because (5^3 + 4)/3 = 43 which is a prime.
23 is prime and appears in the sequence because (23^3 + 4)/3 = 4057 which is a prime.
MAPLE
KD:= proc() local a, b; a:=ithprime(n); b:=(a^3+4)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000);
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[(#^3 + 4)/3] &]
n = 0; Do[If[PrimeQ[(Prime[k]^3 + 4)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}] (* b-file *)
CROSSREFS
Cf. A109953 (primes p:(p^2+1)/3 is prime).
Cf. A118915 (primes p:(p^2+5)/6 is prime).
Cf. A118918 (primes p:(p^2+11)/12 is prime).
Sequence in context: A327409 A140811 A247657 * A338977 A090686 A082277
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 15 2014
STATUS
approved