login
Decimal expansion of the infinite product of e*(1-1/(4*n^2))^(4*n^2) for n >= 2.
1

%I #19 Jan 17 2020 05:26:58

%S 9,2,0,9,0,0,8,2,6,7,8,8,4,2,3,7,1,5,5,6,8,3,8,1,5,8,0,3,8,8,7,4,9,3,

%T 1,4,1,4,9,0,5,5,0,3,0,3,3,3,4,8,6,1,4,0,9,7,3,9,5,3,3,3,9,9,3,5,7,6,

%U 1,1,1,6,4,6,0,9,7,6,1,5,4,5,4,0,1,9,2,4,8,3,3,7,5,2,5,9,9,1,5,2,0,9,5,3

%N Decimal expansion of the infinite product of e*(1-1/(4*n^2))^(4*n^2) for n >= 2.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 2.

%H S. R. Holcombe, <a href="http://arxiv.org/abs/1204.2451">A product representation for Pi</a>, arXiv:1204.2451 [math.NT], 2012.

%F Equals prod_{n>=2} e*(1-1/(4*n^2))^(4*n^2) = (2^9/9^2)*exp(-3/2 - 7*zeta(3)/(2*Pi^2)) = A240984 / A247444.

%e 0.92090082678842371556838158038874931414905503033348614...

%t RealDigits[(2^9/9^2)*Exp[-3/2 - 7*Zeta[3]/(2*Pi^2)], 10, 104] // First

%Y Cf. A240984.

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Aug 06 2014