login
A240985
Decimal expansion of the infinite product of e*(1-1/(4*n^2))^(4*n^2) for n >= 2.
1
9, 2, 0, 9, 0, 0, 8, 2, 6, 7, 8, 8, 4, 2, 3, 7, 1, 5, 5, 6, 8, 3, 8, 1, 5, 8, 0, 3, 8, 8, 7, 4, 9, 3, 1, 4, 1, 4, 9, 0, 5, 5, 0, 3, 0, 3, 3, 3, 4, 8, 6, 1, 4, 0, 9, 7, 3, 9, 5, 3, 3, 3, 9, 9, 3, 5, 7, 6, 1, 1, 1, 6, 4, 6, 0, 9, 7, 6, 1, 5, 4, 5, 4, 0, 1, 9, 2, 4, 8, 3, 3, 7, 5, 2, 5, 9, 9, 1, 5, 2, 0, 9, 5, 3
OFFSET
0,1
LINKS
S. R. Holcombe, A product representation for Pi, arXiv:1204.2451 [math.NT], 2012.
FORMULA
Equals prod_{n>=2} e*(1-1/(4*n^2))^(4*n^2) = (2^9/9^2)*exp(-3/2 - 7*zeta(3)/(2*Pi^2)) = A240984 / A247444.
EXAMPLE
0.92090082678842371556838158038874931414905503033348614...
MATHEMATICA
RealDigits[(2^9/9^2)*Exp[-3/2 - 7*Zeta[3]/(2*Pi^2)], 10, 104] // First
CROSSREFS
Cf. A240984.
Sequence in context: A147711 A096388 A153463 * A296460 A379587 A319533
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved