|
|
A240907
|
|
Decimal expansion of Hopf's constant.
|
|
1
|
|
|
7, 1, 0, 4, 4, 6, 0, 8, 9, 5, 9, 8, 7, 6, 3, 0, 7, 2, 7, 3, 2, 5, 2, 4, 1, 4, 1, 6, 9, 9, 1, 5, 3, 6, 7, 1, 9, 9, 3, 2, 0, 1, 3, 3, 3, 9, 5, 8, 7, 8, 5, 2, 3, 9, 0, 9, 2, 7, 9, 7, 9, 6, 8, 5, 1, 0, 9, 7, 2, 6, 9, 7, 0, 4, 3, 9, 1, 5, 7, 6, 8, 1, 5, 2, 7, 6, 3, 6, 3, 9, 9, 8, 0, 9, 0, 7, 7, 5, 2, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Named after the German-American mathematician and astronomer Eberhard Hopf (1902-1983). - Amiram Eldar, Apr 16 2021
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 345.
|
|
LINKS
|
|
|
FORMULA
|
6/Pi^2 + 1/Pi * integral_{t=0..Pi/2} 3/t^2-1/(1-t*cot(t)) dt.
|
|
EXAMPLE
|
0.710446089598763...
|
|
MAPLE
|
h:= 6/Pi^2 +1/Pi* int(3/t^2 -1/(1-t*cot(t)), t=0..Pi/2):
seq(parse(d), d=convert(evalf(h, 140), string)[2..120]); # Alois P. Heinz, Apr 14 2014
|
|
MATHEMATICA
|
6/Pi^2 + 1/Pi*NIntegrate[3/t^2 - 1/(1 - t*Cot[t]), {t, 0, Pi/2}, WorkingPrecision -> 100] // RealDigits[#, 10, 100]& // First
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|