The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240726 Number of partitions p of n such that m(p) < m(c(p)), where m = maximal multiplicity of parts, and c = conjugate. 4
 0, 1, 1, 2, 3, 5, 6, 9, 13, 18, 25, 32, 44, 58, 78, 102, 131, 166, 219, 277, 353, 446, 566, 696, 882, 1089, 1362, 1667, 2071, 2525, 3109, 3766, 4614, 5583, 6789, 8163, 9886, 11857, 14276, 17043, 20437, 24318, 29049, 34456, 40970, 48477, 57453, 67739, 80009 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also, clearly, a(n) = number of partitions p of n such that m(p) > m(c(p)). LINKS Table of n, a(n) for n=1..49. FORMULA a(n) + A240728(n) = A240727(n) for n >= 1. 2*a(n) + A240728(n) = A000041(n) for n >= 1. EXAMPLE a(7) counts these 6 partitions: 7, 61, 52, 511, 43, 421, of which the respective conjugates are 1111111, 211111, 22111, 31111, 2221, 321. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; m[p_] := Max[Map[Length, Split[p]]]; Table[Count[f[n], p_ /; m[p] < m[c[p]]], {n, 1, z}] (* A240726 *) Table[Count[f[n], p_ /; m[p] <= m[c[p]]], {n, 1, z}] (* A240727 *) Table[Count[f[n], p_ /; m[p] == m[c[p]]], {n, 1, z}] (* A240728 *) CROSSREFS Cf. A240727, A240728, A240729, A000041. Sequence in context: A166048 A240306 A094873 * A240203 A018126 A087900 Adjacent sequences: A240723 A240724 A240725 * A240727 A240728 A240729 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 06:20 EDT 2023. Contains 365781 sequences. (Running on oeis4.)