login
A240541
Number of partitions n such that the multiplicity of the number of odd parts is a part.
2
0, 1, 0, 1, 1, 3, 2, 4, 4, 11, 9, 16, 15, 30, 29, 48, 49, 81, 82, 125, 136, 203, 220, 306, 344, 476, 537, 710, 822, 1068, 1240, 1565, 1851, 2305, 2733, 3323, 3989, 4796, 5775, 6826, 8287, 9694, 11787, 13611, 16659, 19070, 23363, 26463, 32554, 36616, 45080
OFFSET
0,6
EXAMPLE
a(7) counts these 4 partitions: 61, 421, 3211, 2221; e.g., 3211 has 3 odd parts, and the multiplicity of 3 is 1, which is a part of 3211.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Count[Mod[p, 2], 0]]]], {n, 0, z}] (* A240540 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, Count[Mod[p, 2], 1]]]], {n, 0, z}] (* A240541 *)
CROSSREFS
Cf. A240540.
Sequence in context: A326923 A365613 A338315 * A073369 A021759 A070221
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 07 2014
STATUS
approved