login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240502
Product of primes appearing in the factorization of n! with even exponents.
3
1, 1, 1, 1, 1, 1, 6, 6, 3, 3, 30, 30, 10, 10, 35, 21, 21, 21, 42, 42, 210, 10, 55, 55, 330, 330, 2145, 715, 5005, 5005, 6006, 6006, 3003, 91, 3094, 2210, 2210, 2210, 20995, 4845, 1938, 1938, 2261, 2261, 24871, 124355, 5720330, 5720330, 17160990, 17160990, 8580495
OFFSET
0,7
COMMENTS
All terms are squarefree (A005117). - Michel Marcus, Feb 15 2016
LINKS
FORMULA
a(n) = rad(n!)/core(n!) = A336643(n!). - Benoit Cloitre, Mar 12 2022
EXAMPLE
In the prime power factorization 2^7*3^4*5*7 of 9! only the exponent of 3 is even. Thus a(9)=3.
MATHEMATICA
Table[Times@@Select[FactorInteger[n!], EvenQ[#[[2]]]&][[;; , 1]], {n, 0, 50}] (* Harvey P. Dale, Feb 24 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n!)); for (k=1, #f~, f[k, 2] = 1 - (f[k, 2] % 2); ); factorback(f); } \\ Michel Marcus, Feb 15 2016
(PARI) a(n) = {my(res=1); forprime(p=2, n\2, e=val(n, p); if(e%2==0, res*=p)); res}
val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Feb 24 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 06 2014
EXTENSIONS
More terms from Michel Marcus, Feb 15 2016
STATUS
approved