login
A240340
Decimal expansion of the constant 'lambda' such that exp(lambda*z) is the first nontrivial first quadrant complex solution of this form to the functional equation f(z+1)-f(z)=f'(z) [real part].
1
2, 0, 8, 8, 8, 4, 3, 0, 1, 5, 6, 1, 3, 0, 4, 3, 8, 5, 5, 9, 5, 7, 0, 8, 6, 7, 1, 6, 7, 7, 4, 9, 4, 7, 5, 0, 0, 5, 4, 5, 6, 9, 3, 7, 4, 1, 0, 3, 6, 7, 2, 9, 6, 7, 3, 2, 3, 9, 1, 1, 2, 5, 4, 4, 2, 4, 4, 6, 0, 7, 1, 1, 0, 1, 0, 3, 1, 9, 4, 5, 2, 9, 8, 3, 2, 4, 4, 9, 0, 1, 3, 2, 9, 9, 6, 6, 3, 4, 3, 8
OFFSET
1,1
FORMULA
First non-null solution to exp(lambda)-1=lambda in the first quadrant (real part).
Real part of -LambertW(-2, -1/e) - 1.
EXAMPLE
2.088843015613...
MATHEMATICA
lambda = -ProductLog[-2, -1/E] - 1; First[RealDigits[Re[lambda], 10, 100]]
CROSSREFS
Sequence in context: A288438 A287737 A346677 * A288700 A287855 A287542
KEYWORD
nonn,cons
AUTHOR
STATUS
approved