login
A240303
Number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the least part).
3
0, 1, 2, 3, 5, 6, 11, 13, 19, 26, 37, 44, 66, 80, 108, 139, 182, 226, 298, 366, 474, 588, 742, 911, 1154, 1408, 1751, 2143, 2642, 3205, 3944, 4761, 5805, 6998, 8479, 10177, 12285, 14679, 17620, 21014, 25114, 29822, 35529, 42057, 49894, 58927, 69644, 81994
OFFSET
0,3
FORMULA
a(n) + A240304(n) = A000041(n) for n >= 1.
EXAMPLE
a(7) counts all the 15 partitions of 7 except 331 and 2221, so that a(7) = 13.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
Table[Count[f[n], p_ /; m[p] == Count[p, Min[p]]], {n, 0, z}] (* A240303 *)
Table[Count[f[n], p_ /; m[p] > Count[p, Min[p]]], {n, 0, z}] (* A240304 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 04 2014
STATUS
approved