login
A240284
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4
11
1, 2, 2, 2, 8, 3, 4, 19, 19, 4, 4, 76, 80, 38, 7, 8, 181, 570, 262, 114, 10, 8, 741, 2574, 3457, 1461, 251, 15, 16, 1779, 20764, 28654, 33183, 5443, 612, 24, 16, 7308, 97348, 443168, 484146, 218658, 24490, 1656, 35, 32, 17561, 802835, 3980245, 13490093, 5646644
OFFSET
1,2
COMMENTS
Table starts
..1....2.......2.........4............4.............8..............8
..2....8......19........76..........181...........741...........1779
..3...19......80.......570.........2574.........20764..........97348
..4...38.....262......3457........28654........443168........3980245
..7..114....1461.....33183.......484146......13490093......224906182
.10..251....5443....218658......5646644.....281488213.....8597299482
.15..612...24490...1851080.....88953626....8199368365...463717321235
.24.1656..117962..15760838...1357879302..225885684501.23104690637116
.35.3758..459193.110599613..17350066110.5291794810655
.54.9630.2147788.945852472.272318368893
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 15]
Empirical for row n:
n=1: a(n) = 2*a(n-2)
n=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
n=3: [order 48] for n>51
EXAMPLE
Some solutions for n=4 k=4
..3..1..3..3....3..3..1..1....3..1..3..3....3..1..3..1....3..1..3..1
..3..1..3..2....3..2..1..2....3..1..0..0....3..2..0..1....2..2..2..0
..3..1..3..2....2..0..2..2....2..2..2..0....3..2..3..2....2..0..0..1
..2..2..2..0....3..1..0..0....3..1..0..0....2..2..3..3....3..3..0..2
CROSSREFS
Column 1 is A159288
Row 1 is A016116
Sequence in context: A054271 A278245 A321026 * A344897 A011202 A085484
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved