The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240278 Primes p which are floor of Root-Mean-Square (RMS) of prime(n), prime(n+1) and prime(n+2). 1
 3, 5, 13, 19, 43, 47, 53, 83, 89, 103, 109, 131, 157, 167, 173, 193, 211, 229, 233, 257, 263, 313, 349, 353, 359, 373, 383, 389, 409, 443, 449, 463, 503, 563, 593, 607, 643, 647, 653, 677, 683, 691, 709, 733, 797, 823, 859, 883, 919, 941, 947, 971, 977, 983, 1013 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..3075 EXAMPLE 11, 13 and 17 are consecutive primes: sqrt(( 11^2 + 13^2 + 17^2)/3) = 13.89244399: floor(13.89244399) = 13, which is prime and appears in the sequence. 17, 19 and 23 are consecutive primes: sqrt(( 17^2 + 19^2 + 23^2)/3) = 19.82422760: floor(19.82422760) = 19, which is prime and appears in the sequence. 41, 43 and 47 are consecutive primes: sqrt(( 41^2 + 43^2 + 47^2)/3) = 43.73785546: floor(43.73785546) = 43, which is prime and appears in the sequence. MAPLE a := proc(n) local c, b, d, e; c:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=floor(sqrt((c^2+b^2+d^2)/3)); if isprime(e) then RETURN(e); fi; end: seq(a(n), n=1..500); MATHEMATICA Select[Floor[RootMeanSquare[#]]&/@Partition[Prime[Range[200]], 3, 1], PrimeQ] (* Harvey P. Dale, Mar 23 2018 *) CROSSREFS Cf. A000040, A075471, A088165. Sequence in context: A038941 A141215 A191039 * A106915 A112928 A106916 Adjacent sequences: A240275 A240276 A240277 * A240279 A240280 A240281 KEYWORD nonn AUTHOR K. D. Bajpai, Apr 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 02:47 EDT 2023. Contains 365486 sequences. (Running on oeis4.)