login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_(x=c..infinity) (log(x)/(1+x))^2 dx, where c = A141251 = e^(LambertW(1/e)+1) corresponds to the maximum of the function.
2

%I #10 Nov 09 2017 05:05:49

%S 1,5,0,6,4,5,8,7,4,2,5,8,9,7,4,5,9,4,6,0,5,8,0,8,1,7,9,8,0,9,2,5,0,8,

%T 9,0,1,6,2,9,6,5,9,9,0,0,9,8,7,2,2,0,6,0,6,1,5,2,1,2,1,1,4,3,6,5,0,0,

%U 6,3,5,6,2,1,3,9,9,3,4,4,7,5,4,7,8,6,3,9,5,3,0,5,5,1,4,7,3,0,6,6

%N Decimal expansion of Integral_(x=c..infinity) (log(x)/(1+x))^2 dx, where c = A141251 = e^(LambertW(1/e)+1) corresponds to the maximum of the function.

%H G. C. Greubel, <a href="/A240243/b240243.txt">Table of n, a(n) for n = 1..5000</a>

%F A195055 = A013661 + A240242 + A240243.

%e 1.50645874258974594605808179809250890162965990098722060615212114365006356...

%t w = ProductLog[1/E]; w + w^2 + 2 *Log[1+w]*(1+w) - 2*PolyLog[2, -w] // RealDigits[#, 10, 100]& // First

%o (PARI) (w -> w + w^2 + 2*(1+w)*log(1+w) - 2*polylog(2, -w))(lambertw(exp(-1)))

%Y Cf. A013661, A141251, A195055, A240242.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Apr 03 2014