login
A240224
Irregular triangular array read by rows: row n gives a list of the partitions of n into distinct Fibonacci numbers. The order of the partitions is like in Abramowitz-Stegun.
1
1, 2, 3, 2, 1, 3, 1, 5, 3, 2, 5, 1, 3, 2, 1, 5, 2, 8, 5, 3, 5, 2, 1, 8, 1, 5, 3, 1, 8, 2, 5, 3, 2, 8, 3, 8, 2, 1, 5, 3, 2, 1, 8, 3, 1, 13, 8, 5, 8, 3, 2, 13, 1, 8, 5, 1, 8, 3, 2, 1, 13, 2, 8, 5, 2, 13, 3, 13, 2, 1, 8, 5, 3, 8, 5, 2, 1, 13, 3, 1, 8, 5, 3, 1, 13, 5, 13, 3, 2, 8, 5, 3, 2, 13, 5, 1, 13, 3, 2, 1, 8, 5, 3, 2, 1, 13, 5, 2
OFFSET
1,2
COMMENTS
The row length sequence is A240225. The number of partitions in row n is A000119(n).
The order of the partitions is like in Abramowitz-Stegun (rising number of parts, within like part numbers lexicographic) but here the order of the parts has been reversed, that is they are ordered decreasingly.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
EXAMPLE
The array with separated partitions begins:
n\k 1 2 3 4 5 ...
1: 1
2: 2
3: 3 2,1
4: 3,1
5: 5 3,2
6: 5,1 3,2,1
7: 5,2
8: 8 5,3 5,2,1
9: 8,1 5,3,1
10: 8,2 5,3,2
11: 8,3 8,2,1 5,3,2,1
12: 8,3,1
13: 13 8,5 8,3,2
14: 13,1 8,5,1 8,3,2,1
15: 13,2 8,5,2
16: 13,3 13,2,1 8,5,3 8,5,2,1
17: 13,3,1 8,5,3,1
18: 13,5 13,3,2 8,5,3,2
19: 13,5,1 13,3,2,1 8,5,3,2,1
20: 13,5,2
21: 21 13,8 13,5,3 13,5,2,1
22: 21,1 13,8,1 13,5,3,1
23: 21,2 13,8,2 13,5,3,2
24: 21,3 21,2,1 13,8,3 13,8,2,1 13,5,3,2,1
25: 21,3,1 13,8,3,1
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Apr 07 2014
STATUS
approved