

A240092


Sequence of numbers starting at 1 and giving a new maximum record for sigma(n) modulo n (A054024), where sigma(n) is the sum of divisors of n (A000203).


1



1, 2, 4, 8, 10, 14, 16, 26, 32, 44, 50, 52, 60, 64, 76, 92, 105, 110, 128, 136, 152, 170, 184, 225, 230, 232, 248, 256, 296, 315, 336, 376, 410, 424, 470, 472, 484, 512, 568, 584, 592, 630, 656, 688, 752, 792, 848, 884, 944, 976, 988, 1012, 1024, 1072, 1136
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If m is a power of 2, then sigma(m) = 2*m  1 = m  1, so sigma(m) == m1 modulo m, thus giving a new record for A054024, hence A000079 is a subsequence.


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000


EXAMPLE

From the first terms of A054024 : 0, 1, 1, 3, 1, 0, 1, 7, 4, 8, 1, 4, 1, 10, ... we can see the records 0, 1, 3, 7, 8, 10, ... obtained for 1, 2, 4, 8, 10, ....


PROG

(PARI) lista(nn) = {rec = 1; for (n=1, nn, sm = sigma(n) % n; if (sm > rec, rec = sm; print1(n, ", "); ); ); }


CROSSREFS

Cf. A000079, A000203, A054024.
Sequence in context: A226872 A132895 A125499 * A153974 A290476 A189670
Adjacent sequences: A240089 A240090 A240091 * A240093 A240094 A240095


KEYWORD

nonn


AUTHOR

Michel Marcus, Apr 01 2014


STATUS

approved



