|
|
A239995
|
|
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
|
|
1
|
|
|
3, 13, 61, 256, 1117, 5012, 22592, 102336, 465662, 2123857, 9698188, 44317651, 202610817, 926532786, 4237612923, 19382872561, 88661747469, 405570672096, 1855255219753, 8486814865920, 38822908166872, 177595801954595
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 2 of A240000
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 8*a(n-1) -20*a(n-2) +34*a(n-3) -84*a(n-4) +92*a(n-5) -68*a(n-6) +222*a(n-7) +13*a(n-8) -251*a(n-9) +25*a(n-10) -495*a(n-11) +485*a(n-12) -44*a(n-13) -180*a(n-14) +554*a(n-15) -648*a(n-16) +14*a(n-17) +152*a(n-18) -190*a(n-19) -140*a(n-20) +397*a(n-21) -273*a(n-22) +75*a(n-23) +167*a(n-24) -136*a(n-25) +27*a(n-26)
|
|
EXAMPLE
|
Some solutions for n=5
..3..3....0..3....0..3....3..3....3..3....3..3....3..3....0..0....0..3....3..3
..0..3....3..2....0..0....0..2....0..3....0..3....0..3....3..3....0..2....0..3
..0..3....2..1....3..3....0..0....2..2....0..3....3..2....3..3....3..2....3..3
..2..2....2..1....0..2....3..2....2..1....3..2....3..1....2..2....2..2....2..1
..2..0....2..0....2..0....3..2....2..0....3..3....2..1....3..1....0..0....3..1
|
|
CROSSREFS
|
Sequence in context: A112568 A104089 A334150 * A319924 A108143 A101368
Adjacent sequences: A239992 A239993 A239994 * A239996 A239997 A239998
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 30 2014
|
|
STATUS
|
approved
|
|
|
|