login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239566 (Round(c^prime(n)) - 1)/prime(n), where c is the heptanacci constant (A118428). 2
7200, 25562, 332466, 16472758, 61145666, 3200477798, 45473543628, 172043098818, 2478186385762, 137291966046470, 7704742900338106, 29569459376703894, 1681851263230158754, 24987922624169214866, 96433670513455876108, 5566902760779797458210 (list; graph; refs; listen; history; text; internal format)
OFFSET
7,1
COMMENTS
For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.
LINKS
S. Litsyn and V. Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
V. Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
Eric Weisstein's World of Mathematics, Heptanacci Constant
FORMULA
All roots of the equation x^7-x^6-x^5-x^4-x^3-x^2-x-1 = 0
are the following: c=1.9919641966050350211,
-0.78418701799584451319 +/- 0.36004972226381653409*i,
-0.24065633852269642508 + /- 0.84919699909267892575*i,
0.52886125821602342773 +/- 0.76534196109589443115*i.
Absolute values of all roots, except for septanacci constant c, are less than 1.
Conjecture. Absolute values of all roots of the equation x^n - x^(n-1) - ... -x - 1 = 0, except for n-bonacci constant c_n, are less than 1. If the conjecture is valid, then for sufficiently large k=k(n), for all m>=k, we have round(c_n^prime(m)) == 1 (mod 2*prime(m)) (cf. Shevelev link).
CROSSREFS
Sequence in context: A204480 A035906 A190114 * A236993 A218513 A181259
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 12:53 EDT 2024. Contains 371780 sequences. (Running on oeis4.)