login
A239566
(Round(c^prime(n)) - 1)/prime(n), where c is the heptanacci constant (A118428).
2
7200, 25562, 332466, 16472758, 61145666, 3200477798, 45473543628, 172043098818, 2478186385762, 137291966046470, 7704742900338106, 29569459376703894, 1681851263230158754, 24987922624169214866, 96433670513455876108, 5566902760779797458210
OFFSET
7,1
COMMENTS
For n>=7, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. In particular, all terms are even.
LINKS
S. Litsyn and V. Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
V. Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
Eric Weisstein's World of Mathematics, Heptanacci Constant
FORMULA
All roots of the equation x^7-x^6-x^5-x^4-x^3-x^2-x-1 = 0
are the following: c=1.9919641966050350211,
-0.78418701799584451319 +/- 0.36004972226381653409*i,
-0.24065633852269642508 + /- 0.84919699909267892575*i,
0.52886125821602342773 +/- 0.76534196109589443115*i.
Absolute values of all roots, except for septanacci constant c, are less than 1.
Conjecture. Absolute values of all roots of the equation x^n - x^(n-1) - ... -x - 1 = 0, except for n-bonacci constant c_n, are less than 1. If the conjecture is valid, then for sufficiently large k=k(n), for all m>=k, we have round(c_n^prime(m)) == 1 (mod 2*prime(m)) (cf. Shevelev link).
KEYWORD
nonn
AUTHOR
STATUS
approved