login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239543
a(n) is the minimum number greater than a(n-1) such that the concatenation a(n) U a(n-1) U ... U a(1) is a Niven number, starting with a(1)=1.
2
1, 2, 6, 71, 73, 114, 141, 147, 150, 192, 255, 480, 824, 871, 879, 1014, 1270, 1331, 1359, 1458, 2244, 2547, 2635, 3021, 3447, 3575, 3984, 4035, 4138, 4187, 4554, 6042, 6419, 6431, 6602, 6765, 7074, 7599, 7878, 8163, 9768, 9948, 9975, 10397, 11572, 11961, 12025
OFFSET
1,2
LINKS
Paolo P. Lava and Giovanni Resta, Table of n, a(n) for n = 1..5000 (first 100 terms from Paolo P. Lava)
FORMULA
Starting with a(1)=1, the minimum number a(2) such that a(2) U a(1) is a Niven number is 2. In fact 21 / 3 = 7.
Again the minimum a(3) such that a(3) U a(2) U a(1) is a Niven number is 6. In fact 621 / 9 = 69. Etc.
MAPLE
with(numtheory);
S:=proc(s) local w; w:=convert(s, base, 10); sum(w[j], j=1..nops(w)); end:
T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, c, j, n; a:=1; j:=1; print(1);
for n from 1 to q do b:=T(a); c:=j*10^b+a;
if type(c/S(c), integer) then a:=j*10^b+a; print(j); fi;
j:=j+1; od; print(); end: P(10^6);
CROSSREFS
Sequence in context: A129785 A000896 A103527 * A180982 A195690 A359365
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Mar 21 2014
STATUS
approved