OFFSET
1,4
COMMENTS
Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0, 1, or 2.
EXAMPLE
Let h = max(p). The (h,0)-separable partition of 8 are 161, 251, 341, 242; the (h,1)-separable partitions are 71, 62, 323, 1313; the (h,2)-separable partitions are 323, 21212. So, there are 4 + 4 + 2 = 10 h-separable partitions of 8.
MATHEMATICA
z = 75; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239515 *)
t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2*Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239516 *)
t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Max[p]] <= Length[p] + 1], {n, 1, z}] (* A239517 *)
t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Length[p]] <= Length[p] + 1], {n, 1, z}] (* A239518 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 26 2014
STATUS
approved