login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into nonprime squarefree numbers, cf. A000469.
6

%I #3 Mar 21 2014 08:59:53

%S 1,1,1,1,1,1,2,2,2,2,3,3,4,4,5,6,7,7,8,8,10,12,14,14,16,17,20,22,25,

%T 26,31,33,37,40,45,49,57,60,66,71,80,86,98,104,115,125,138,147,164,

%U 175,193,209,230,244,269,289,318,343,374,398,437,468,510,548

%N Number of partitions of n into nonprime squarefree numbers, cf. A000469.

%e a(10) = #{10, 6+1+1+1+1, 10x1} = 3;

%e a(11) = #{10+1, 6+1+1+1+1+1, 11x1} = 3;

%e a(12) = #{10+1+1, 6+6, 6+6x1, 12x1} = 4;

%e a(13) = #{10+1+1+1, 6+6+1, 6+7x1, 13x1} = 4;

%e a(14) = #{14, 10+1+1+1+1, 6+6+1+1, 6+8x1, 14x1} = 5;

%e a(15) = #{15, 14+1, 10+5x1, 6+6+1+1+1, 6+9x1, 15x1} = 6;

%e a(16) = #{15+1, 14+1+1, 10+6, 10+6x1, 6+6+4x1, 6+10x1, 16x1} = 7.

%o (Haskell)

%o a239508 = p a000469_list where

%o p _ 0 = 1

%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

%Y Cf. A239509, A073576.

%K nonn

%O 0,7

%A _Reinhard Zumkeller_, Mar 21 2014