login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239488
Expansion of 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3.
0
6, 30, 186, 1290, 9582, 74550, 599730, 4948050, 41638614, 356007630, 3083837802, 27006251610, 238704231102, 2126733078630, 19079571337314, 172209370246050, 1562686251141030, 14248144422407550, 130467052593799962
OFFSET
1,1
FORMULA
a(n) = sum(i = 0..n+1, 2^i*binomial(n,n-i+1)*binomial(n+i-1,n-1))/n.
a(n) = T(2*n,n-1)/n where T(n,k) is triangle A116412.
D-finite with recurrence: (n+1)*a(n) +5*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. a(n) = 2*A103210(n). - R. J. Mathar, May 23 2014
MAPLE
ogf := 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3;
series(ogf, x=0, 20): seq(coeff(%, x, n), n=0..19); # Peter Luschny, Mar 21 2014
PROG
(Maxima) a(n):=sum(2^i*binomial(n, n-i+1)*binomial(n+i-1, n-1), i, 0, n+1)/n;
CROSSREFS
Cf. A103210.
Sequence in context: A368524 A259276 A109501 * A147517 A294221 A005922
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 20 2014
STATUS
approved