%I #17 Oct 19 2018 16:59:24
%S 3,28,282,2827,28274,282743,2827433,28274333,282743338,2827433388,
%T 28274333882,282743338823,2827433388230,28274333882308,
%U 282743338823081,2827433388230813,28274333882308139,282743338823081391,2827433388230813914
%N Floor of first differences of Pi*10^n.
%C For n>0, a(n) = decimal expansion of 9*Pi truncated to n-1 places.
%C This sequence is not the same as the first differences of A011545: 3, 28, 283, 2827, 28274, 282744, 2827433, 28274334, 282743339, 2827433388, ...
%F a(0)=3, a(n)=floor(Pi*10^n-Pi*10^(n-1)) for n>0.
%e a(2)=floor(Pi*10^2-Pi*10^1) = 282.
%t Join[{3},Differences[Pi*10^Range[0,20]]//Floor] (* _Harvey P. Dale_, Oct 19 2018 *)
%o (PARI) a(n) = if (n==0, 3, floor(Pi*10^n-Pi*10^(n-1))); \\ _Michel Marcus_, Mar 18 2014
%Y Cf. A011545.
%K nonn
%O 0,1
%A _Jeremy Gardiner_, Mar 14 2014
|